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Abstract. A scheme for a fast decomposition of the total density of states evaluated by the 
recursion method is presented. It is suggested that all the projected densities can be obtained 
in a single recursion calculation instead of applying the complete recursion procedure to 
each projection separately. The proposed scheme appears to be exact for the correct choice 
of the initial vector of the recursion transformation. It is shown that when the random initial 
vector approach to the total density of states is implemented, good results can be obtained 
in particular for calculating the partial densities of states. 

The applicability and efficiency of the proposed method is demonstrated on two model 
systems. A simple criterion of reliability is formulated. Possible ways to eliminate spurious 
effects caused by the random initial vector approach are discussed. 

1. Introduction 

The recursion method (Haydock et a1 1972, 1975) has become a well established and 
powerful tool for the effective diagonalization of large Hamiltonians in the last decade. 
(For an exhaustive review of the topic see Heine et a1 (1980); the generalization to non- 
orthogonal basis sets was done by Ballentine and KolG (1986).) Besides its natural 
application in the density of states (DOS) calculations the method has proved its efficiency 
also in less straightforward cases, such as the electronic transport properties (Stein and 
Krey 1980, Bose et a1 1983) and it turned out to be also a suitable framework for 
determining effective interatomic interaction (Stankey and Allen 1986, Esterling et a1 
1987). 

The DOS calculations within the recursion method scheme are usually performed by 
summing up over an adequate set of respective local density of states (LDOS) contri- 
butions. Of course, for periodic systems comprising only a small number of non-equiv- 
alent sites this is the most efficient and exact way (within the exactness of the method 
itself) as well, while for a cluster simulating an amorphous system, typically consisting 
of 103-105 orbitals, an alternative conception of the random initial vector may turn out 
to be more efficient for evaluating the total density of states (TDOS) (e.g. Ishii and 
Fujiwara 1980, KrajEi 1987) and the partial densities of states (PDOS) (Varga and Krem- 
paskq 1989). In some cases use of the selected random initial vector appears to be 
advantageous (Varga and Krempaskq 1989). However, if self-consistency in the elec- 
tronic structure determination is desired a need for more effective LDOS or PDOS cal- 
culations arises. 
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Evidently, to employ the recursion method framework for recent challenging first- 
principles computer simulations of solids (Hafner and Jaswall988), even faster schemes 
are required to enable local electronic structure and electronic interaction evaluation to 
be repeated many times over all the orbitals of the cluster. Various termination tech- 
niques can be used to lower the computational effort by lowering the number of exactly 
evaluated recursion levels. Esterling et a1 (1987) even suggested speeding up the elec- 
tronic force computational scheme by terminating the recursion drastically after the first 
exactly evaluated level. 

We propose a completely different way to make electronic structure calculations 
more effective. Instead of attempting lowering the effort for each particular calculation 
we suggest performing the recursion transformation only once for the whole system and 
then somehow extracting all the local quantities of interest from it. In §2 the philosophy 
of the scheme, as well as the computational aspects of the method, are described. The 
results of test runs on model systems are presented in 83. A simple criterion of reliability 
is also formulated here. In 64 the applicability and consequences of implementing the 
random initial vector approach are discussed. Finally, 85 contains the conclusions. 

2. Method 

2.1 .  Background 

Let us summarize the basic equations we will need for the description of our method 
first. Let the Hamiltonian of the electronic system have a simple tight-binding form: 

N N N  

a a p#f f  

in the basis set of atomic orbitals. Once the set of eigenvalues E,, and eigenvectors IQ,,) 
of H is known, the density of states can be expressed as 

N 

(2) 
1 

g ( E )  = - S(E - E,,). 
N f l  

Similarly, the LDOS on the state la) is a projection of the DOS onto this state: 

N 

(3) 
1 

g"(E) = l(al@.,>l2 - E,,). 
n 

By means of the recursion transformation (for the explicit form see e.g. Haydock et 
a1 (1975)) the Hamiltonian is transformed into a symmetric chain form: 

L - 1  

h = C [aiIui>(uiI+bi+l(Iui)(ui+l I +Iui+l)(uiI)l (4) 
i = O  

where the orthogonal u-basis set and h-matrix elements a,,, b, are generated successively 
in the process of the transformation. In practice, L < N is sufficient for reasonable 
results. The choice of the initial vector of the transformation iuo) is discussed below. 
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The truncated Hamiltonian h can easily be diagonalized in the u-basis set 

e = pihp ( 5 )  

where e and p are the matrices of eigenvalues en and eigenvectors lq,), respectively.? 
For the matrix elements of the latter we adopted the notation 

Pnk = ( u k  1 q n ) .  (6) 

The eigenvectors 1 q,) are commonly understood to be normalized to unity, e.g. 

l ( u k I q n ) 1 *  = 1. 
k 

(7) 

Now the projected density of states onto the initial vector luo) can be expressed as 

where the weight is 

such that 

L 

wlp' = 1 
n 

As a consequence of the truncation, all the quantities are now dependent on the 
initial vector, which is indicated by the superscript in equations (8)-(10). (Precisely, the 
eigenvalues and eigenvectors should be denoted in the same way, however, we will 
mostly omit this for simplicity of notation.) 

By the local orbital choice of the vector luo) each LDOS can easily be evaluated. All 
the component densities as well as the TDOS itself can be summed up from these local 
projections; of course, the whole recursion transformation has to be repeated for each 
projection separately. Our goal would rather be the opposite, namely to perform the 
expensive recursion procedure only once for a projection representing the TDOS and 
then to decompose all the required local weights from this single projection. Such a 
scheme is proposed in the following subsection. 

2.2. Decomposition scheme 

Let us emphasize first that, as a consequence of the truncation, all the weights (9) are 
strongly dependent on n even if they represent the TDOS which is, of course, not the case 
for the full Hamiltonian H where (see (2)) w, = 1," regardless of n. 

t Instead of stressing the L-dependence of eigenvalues and eigenfunctions of h explicitly, we adopted the 
use of small letters and capitals to distinguish between the quantities referring to the truncated and full 
Hamiltonians, respectively. 
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Let us assume now that the projection vector luo) is chosen in such a way that (8) 
represents the TDOs. In this case it might seem obvious to consider the quantities 1 ( C U I  9,) l 2  
which follow from the expansion? 

L 

( @ I q n >  = (aluk)(Uk/Q)n) (11) 
k 

to be (in analogy with (3)) directly the required LDOS weights, w,". As can be easily 
verified (see ( 7 ) ) ,  regardless of n: 

c. l(4Pn)12 = 1. (12) 
a 

(Notice in this context that contrary to the full Hamiltonian, the sum X n I ( c u / q n ) ~ *  # 1 
for L < N . 3 )  However, as has already been pointed out above, a strongly n-dependent 
weight wlp) (9) is expected to be a result of (12) for L Q N .  The straightforward way to 
cope with this shortcoming is to suggest a 'renormalized' form for the LDOS weights: 

w; = I ( L Y l q n ) 1 2  x w p  (13) 
provided that wio) corresponds to the TDOS of the system. The form (13) requires that 
the eigenfunctions be normalized to w(p) instead of unity. We will refer to such nor- 
malization by an asterisk, e.g. 

1(q,,* 1q,,*)l2 I (uk/q ,*)I2  = wLo'. (14) 

w; = l(alq,,*)l2. (15) 

k 

In this notation, (13) reads 

Now, w," obviously has the correct behaviour with regard to the sum over LY for both 
L < N and L +, N cases. Thus we have good reasons to consider the quantity (15) to be 
the true LDOS weight required for our decomposition scheme. 

In the following subsection we will concentrate on the technical problems of employ- 
ing the scheme. 

2.3. Technical details 

The crucial problem in implementing the scheme proposed in 92.2 is that we do not 
know any exact form for the initial vector luo), projection onto which would return the 
TDOS directly. (We refer to such a hypothetical vector by a superscript e.g. lug)), 
wt) etc.) 

Because of the lack of any true lug)), we used the well known approach of random 
initial vectors of the form 

N 

lug)) = N-' /*  fala). (16) 
a 

where f a  are random numbers, = -+ 1. In an attempt to get rid of the randomness in 

f Though the u-subspace rL of dimension L Q N is, in general, insufficient for the correct expansion of a 
vector from the a-space rN. the expansion is exact for the scalar product (cuirp,) as lrpn) E r L  does not have 
any non-zero projection out of rL. 
$ Though U'U = i, UU' # I for the truncated recursion transformation matrix U (i and I being the respective 
unit matrices). 
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(16), averages of the evaluated quantities over several, say nl, different choices of (16) 
are taken usually. 

Starting now from the random state (16) the recursion procedure is performed. The 
products (culcp,) for the evaluation of local weights (13) follow from the expansion (11). 
(To evaluate (11) effectively, the set of successively generated u-vectors should be stored 
in a backing storage in the process of the recursion transformation (4).) The desired 
weights w i  are easily summed up from the local weights w," (13) over all the A-states of 
our interest. The set of {e,,, w;;'} now fully defines? the corresponding DOS, gA(E) (see 
(3)). For L < N ,  however, the set of weighted b-functions is too small to produce even 
a quasi-smooth function. The &-broadening of the b-functions is a straightforward 
remedy; however, it suffers from the arbitrariness of E .  Fortunately, a one-to-one 
correspondence exists between the set {e,, w,} and the h-matrix elements (the recursion 
coefficients) {a,,, b,t} (see appendix). Thus the standard routines for evaluation of the 
DOS from the recursion coefficients (Nex 1978, Haydock and Nex 1985) can be used 
without change also in our case. 

In addition, one important point deserves to be mentioned in this context. It follows 
from the physical sense of the sum 

that nA should be equal to the relative number of A-states in the system n i .  Because of 
the approach (16) this condition is never fulfilled exactly, as will be demonstrated in 0 3. 
However, if the difference between the sum (17) and its expected value, n i ,  

is not too large, the discrepancy does not notably influence the resulting DOS. (Anyhow, 
the weights w;;' entering the g ( E )  calculation are correctly normalized first.) Moreover, 
as will be demonstrated below, the deviation (18) may be considered as a simple criterion 
of the reliability of application. 

3. Test calculations 

To verify the applicability of our scheme the method was tested on two different systems, 
which we believe to be quite representative and for which reference DOS curves can be 
easily found. 

As a first test system a realistic model of amorphous Fe (a-Fe) was chosen. This 
system has already been intensively studied by many authors (see Varga and Krempaskg 
(1989) and references therein). The structural model and the Hamiltonian parameters 
were taken from our earlier work (Varga and Krempaskg 1989). Random partial initial 
vector choice was used for the evaluation of reference PDOS curves. Their comparison 

t The question may arise, whether the set of eigenvalues {e)!')} can be used also in connection with w,:'. For 
L = N ,  of course, both eigenvalue sets are equivalent. Though this is not exactly true for the truncated 
Hamiltonian, the differences between eigenvalue-sets we have found to be only very slightly sensitive to the 
choice of lug). 
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Figure 1. Comparison of the reference (full curve) and decomposed (broken) PDOS for the 
a-Fe system. (The scales for different orbital types are not the same.) 

Table 1. An illustration of the dependence of sum (17) on the level of the truncation L for 
the a-Fe system. The expected value ( L  + =) is also indicated. 

L S P d 

15 0.122 0.364 0.514 
30 0.116 0.351 0.539 
50 0.115 0.343 0.542 

100 0.115 0.337 0.548 

3: 0.111 0.333 0.556 

with the decomposition-calculated PDOS curves is shown in figure 1. (Averages over n, = 
5 sets were used for reference curve evaluation; this number was found to be sufficient 
for the decomposition scheme as well.) The dependence of the sum (17) on the level of 
the Hamiltonian truncation L was also studied for this case. The results are summarized 
in table 1. 

In figure 2 an attempt to decompose the TDOS of the model above into the local 
density of d states on a single specified site in the central part of the cluster is presented. 
The reference curves were evaluated as the sums over the respective local initial orbital 
contributions here. Though the decomposed densities reproduce the general shape of 
the reference curve fairly well, the agreement is not as excellent as for the d-PDOS in 
figure 1. We attempted to improve the result by the use of selected random initial vectors 
(Varga and Krempasky 1989), however, this had no significant effect on improving the 
agreement (see figure 2). Averages over n, = 30 sets were used here. Increasing n, over 
this value produced almost no improvement of the decomposed curves. The agreement 
of sums (17) with their expected values was found to be typically of an order worse than 
for the PDOS case. 
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An artificial FCC cluster containing two different types of sites, both sites occupied 
by d orbitals only, was our second test system. It was chosen to verify whether our 
decomposition scheme is able to cope with a many-peaked curve. Considering the highly 
oscillatory shape of the curves the decomposed densities turned out to be in surprisingly 
good agreement with the reference case. Again, ni = 5 was found to be sufficient. The 
sum (17) agreed with the expected value within 0.005 for each calculation. In figure 3 
the site-type decomposed DOS curves for two different cluster sizes are presented. 

Concluding this section, we remark that we have found the last few pairs of recon- 
structed recurrence coefficients (U,, 6,) to be unreliable in some cases. Hence the u- 
basis dimension L should be chosen to be such a size that the last few pairs (un, b,) might 
be omitted from the final DOS evaluation. Our calculations were performed in the u- 
basis of dimension L = 30, keeping then only L = 25 levels of the reconstructed recursion 
coefficients for the DOS evaluations. 

4. Discussion 

The only approximation we have made in our scheme (within the approach of the 
recursion method itself) is the random initial vector approximation to the TDOS (16). 
Let us discuss the consequences and some ways to improve the scheme within and 
beyond (16). 

The natural way to cope with the stochastic character of the vector (16) is to average 
the results over several different random initial vector sets. The effect of this averaging 
is, however, not as straightforward as for the pure g ( E )  evaluation. In the process of 
decomposition calculation spurious statistically non-vanishing terms may occur which 
were not present in the pure DOS calculation. This can also explain the fact that increasing 
n, over a certain value (in our test systems n, = 30 for LDOS and n, = 5 for the PDOS 
cases, see 03) does not further improve the decomposed curves. The notable difference 
between the two attempts at the LDOS decomposition in figure 2 might also be due to the 
same reason. Evidently, the selected random initialvector choice suppresses some terms 
which are present in the simple random initial vector case. 

Increasing the cluster size appeared to show a more positive effect (see figure 3). The 
stochastic terms, which cancel out already before further decomposition processing, 
vanish faster the larger the basis set is. Thus, while for a simple TDOS calculation the 
accuracy of the approach (16) is proportional to the product n, X N (KrajEi 1987), the 
cluster basis set size, N ,  seems to be the factor of higher importance in improving our 
scheme within (16). 

In the limit L + N ,  U becomes a true unitary transformation matrix and all the results 
should be independent of the choice of lu,,), thus making the problem of the true lug)) 
irrelevant. Increasing the level of truncation L is, however, far from being an effective 
way of improving iuf)) .  As can be seen from the dependence of the sum (17) on L (table 
l ) ,  the convergence of such an improvement can be expected to be very slow. In addition, 
for extremely high values of L tendency to numerical instability may occur. 

As has been demonstrated in § 3, while the decomposition into PDOS contributions 
is in satisfactory agreement also within the approach (16), this does not hold fully for 
the LDOS evaluations (see figure 2) .  Notice also that while for our test cases the deviation 
(18) was found to be very slight for the PDOS evaluations, this was not the case for the 
LDOS. This indicates that (18) can be considered as a simple criterion of applicability of 
our scheme. Evidently, attempts to calculate local quantities such as local charges, bond 
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Figure 2. Comparison of the reference (full 
curve), decomposed (random U,,) (broken) and 
decomposed (selected random U”) (dotted) d- 
LDOS on several sites of the a-Fe system. 

2 5 6  sites 

- 2  0 2 4 
E (eVI  

Figure 3. Site-type decomposed PDOS for two sizes 
of the model FCC cluster: reference (full curve) 
and decomposed (broken). 

orders etc within our scheme must be performed very carefully, bearing in mind the 
possible inadequacy. Notice that the quantities (mi q ,* ) are the LCAO coefficients in our 
scheme. Hence, if we had a better approach to lug)), quantities otherwise inaccessible 
within the recursion method (e.g. the participation ratio (Bell and Dean 1970)) could 
be evaluated as well. 

A simple estimate shows that the use of our scheme reduces the number of cal- 
culations even for a small number of component-Dos evaluations. The ratio of the extra 
CPU time spent on the expansion ( l l ) ,  tE, to the amount of time spent on the recursion 
transformation (4), tR. is approximately tE/tR = L/N ,  where N ,  is the average number 
of basis functions within the interaction sphere. For typical cases ( N ,  = 50-100 at least) 
even the simplest decomposition of the TDOS into two PDOS contributions is faster than 
performing transformation (4) twice. 

Let us examine now the possibility of improving the 1 u t ) )  beyond (16). KrajEi (1987) 
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set down the explicit form 

for the exact TDOS projection vector which is, unfortunately, of no practical use as we 
do not know any effective way to construct the eigenfunctions of the full Hamiltonian 
within the recursion method. Moreover, as has been pointed out in the quoted work, 
taking the eigenfunctions Iqn) of the truncated Hamiltonian instead of I Q n )  in (19) fails 
to give satisfactory results, since the product l(qn lut))I2 is evidently not the n-dependent 
w(p) as required for the truncated case (see 02.2). However, employing the renormalized 
eigenfunction (14) in the truncated analogy of (19) 

L L 

l u t ) ) = C ,  ~ q i ) = C ,  (wio))1'21qn) (20) 
n n 

does not suffer from the above shortcoming and has the correct behaviour for both the 
L G N a n d L +  Ncases. 

Unfortunately, though (20) has a correct form and can be easily evaluated, it cannot 
be considered as a scheme to construct an approach to I u t ) )  beyond (16) since by means 
of the equation (20) the initial vector of the recursion transformation luo) merely 
reproduces itself because 

CIq,*) = E  I q n ) ( q n I u o ) =  Iuo). (21) 
n n 

Nevertheless, we will make use of property (21) below. In addition, we use the above 
equations to point out the correspondence between the analogous equations referring 
to the full and truncated Hamiltonians, respectively. Suppose we have the true I@). 
Then for the recursion coefficient a. follows 

N 1 
U O  =-C, E,,. (22) 

a. = E ~ $ 0 )  e,, 

N n  
The analogy of (22) for the truncated case is, however, 

L 

(23) 
n 

which follows immediately from (Al )  in the appendix. 
Considering now the pairs of equations (19)-(20) and (22)-(23) we get the following 

correspondence. Obviously, the sets {En,  I Q n ) }  correspond to {en, lqn)}, but less evident 
is that the analogy of the constant factor 1/N for the full Hamiltonian is the weight 
w(p) in the truncated case. This also supports our notion that the normalization (14) is a 
property inherent to the truncation. 

Finally, we briefly present an attempt to improve Iu t ) ) ,  based on minimizing the local 
deviations (see (18)): 

1 
6 ,  = E w," - - 

n N' 
(24) 

Making use of the self-reproducing property of lug) (21) we derived the following 
iterative improvement scheme: 
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where 6, is defined by (24) and y is a convergence parameter, y < 1 ensuring that the 
square root in (25) is real. Though the scheme (25) had a positive effect on reducing the 
deviations (24) it did not improve the TDOS. This failure becomes evident since any new 
initial vector of the form (25) generates again the same subspace rL as the initial 
I u t ) )o  did. Obviously, a more sophisticated scheme incorporating also subspaces beyond 
rL would be desirable. 

5. Conclusions 

We have proposed a simple decomposition scheme within the tight-binding recursion 
method which makes it possible to obtain all the projected densities of states within a 
single run of the recursion procedure. We have reasons to believe that our method is 
exact for the correct choice of initial projection vector. Our test calculations show 
that the random initial vector approach to the TDOS appears to be a highly sufficient 
approximation for a working decomposition scheme when PDOS evaluations only are 
required. The proposed scheme is, in principle, a fast tool for the complete LCAO analysis; 
however, this must be attempted with care within our approach to the TDOS, bearing in 
mind the possible lower reliability of results for evaluation of local quantities. A search 
for an improvement beyond the random initial vector approach appears to be highly 
acute in this context. Nevertheless, already in the approach used, the scheme can be 
successfully employed to speed up at least some electronic structure calculations within 
the recursion method. 
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Appendix 

The algorithm for reconstruction of the recursion coefficients set {a,, b,} from the set of 
eigenvalues and weights {e,, w,~} ,  n = 0, . . . , L - 1 is described here. 

The quantities a,, b, are the matrix elements of the truncated Hamiltonian h (4); the 
latter can be expressed (see (5)) as 

h = pept. (AI) 
The elements of the eigenvalue matrix e, are all known (e is diagonal), wlhe only 

From (9) their value follows: 
the first-row elements of the eigenfunction matrix are available. 

PE = (%I%) = lWl1’*. (A21 
Thus, hoo = a. can immediately be obtained from (Al). Considering the recurrence 
relation (see e.g. Heine et aZl980) 

bk+lPnk+l = (en-a,)pz-bkPnk-l 

p l l  = o  n = o , .  * . , L - 1 k = O ,  . . . ,  L - 1  (‘43) 



Decomposition of the density of states 8313 

the next row of p-matrix elements is evaluated; at the same time b k t l  follows from the 
normalization (7). 

Now (Al) is applied to evaluate the next diagonal element of h and the whole 
procedure is repeated until all the L values of a,, b, are known. Moreover, notice that 
all the eigenfunction matrix elements have been reconstructed as a byproduct of the 
procedure as well. 
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